投資分析的盡頭是貝葉斯概率
(相關(guān)資料圖)
1/6
同一件事的多個(gè)概率
你研究了一家公司的財(cái)報(bào),覺得數(shù)據(jù)很不錯(cuò),行業(yè)空間也很大,有產(chǎn)業(yè)政策扶持,投資邏輯也非常順,你考慮買入;?
但你在調(diào)研中認(rèn)識(shí)了一個(gè)公司離職人員,了解到公司管理混亂,領(lǐng)導(dǎo)人缺乏進(jìn)取心,在這個(gè)競(jìng)爭(zhēng)非常激烈的行業(yè),你聯(lián)想到公司的競(jìng)爭(zhēng)地位實(shí)際上是在慢慢下降的,于是你猶豫了;?
然后你走訪了經(jīng)銷商,發(fā)現(xiàn)公司對(duì)渠道的控制力很強(qiáng),而經(jīng)銷商的反饋也表明,消費(fèi)者很有粘性,近期的動(dòng)銷繼續(xù)保持強(qiáng)勢(shì)。
你又跟同行討論了一番,得到的信息更混亂了……
以上的情況是投資中的常態(tài),從不同角度得到不同的分析結(jié)果,對(duì)應(yīng)著不同獲勝概率。
但操作上只有“買、不買”兩種選擇,如果買了,結(jié)果只有“達(dá)到盈利預(yù)期”和“沒達(dá)到盈利預(yù)期”這兩種中的一個(gè),為什么一件事會(huì)有不同的概率呢?
這取決于你如何理解“概率”。
有人認(rèn)為,沒有什么概率,投資的結(jié)果不是賺就是虧,不是0就是100%;也有人認(rèn)為,投資中有概率但算不出來,等于沒有概率。
關(guān)于概率,有兩種解釋,“古典解釋”把概率看成是一個(gè)客觀的獨(dú)立數(shù)值,比如:
已知口袋里有9個(gè)紅球和1個(gè)白球,讓你閉著眼睛摸出一個(gè)為紅球的概率是90%。
如果此時(shí),你看了一眼手上的球,扔掉,繼續(xù)閉眼再摸一個(gè),因?yàn)槲也恢滥銊偛琶降氖鞘裁辞?,所以我只能認(rèn)為,你摸到紅球的概率還是90%,但因?yàn)槟阒滥阕约簛G掉的是紅球,對(duì)于你而言,下一個(gè)仍然為紅球的概率就變成88.89%。
同一件事就這樣出現(xiàn)了兩個(gè)概率。
這就是概率的另一種解釋——貝葉斯概率,這是一個(gè)基于信念的、主觀的、可變的數(shù)值,隨著你了解的新信息而變化。
貝葉斯算法的角度看,概率不但可計(jì)算,而且可以隨著信息變化,而股價(jià)的變化取決于信息的邊際變化,那么概率的變化也可以引發(fā)股價(jià)的變化,即,可以用于投資決策。
看一個(gè)實(shí)際投資問題:有一家大公司搞借殼上市,有A、B、C公司三個(gè)備選目標(biāo),你在研究了一番后覺得都差不多,于是選擇了A。
后來,你找到了一個(gè)了解借殼內(nèi)情的人,告訴他你買了A,但他不愿意直接告訴你答案,只能告訴你,B公司是不可能的。
請(qǐng)問,這個(gè)信息對(duì)你有用嗎?換句話說,現(xiàn)在只剩下A和C兩家公司,你要不要把A換成C?
很多同學(xué)可能已經(jīng)看出來了,這就是“三門問題”的變形。
2/6
三門問題與貝葉斯算法
考慮到還有很多讀者不知道“三門問題”,所以我簡(jiǎn)要地復(fù)述一下:
這是一個(gè)競(jìng)猜的電視節(jié)目,臺(tái)上有三扇關(guān)著的門,其中兩扇門后是羊,一扇門后是車,你可以選其中任何一扇,如果是車,就歸你了。
于是,你隨機(jī)選了一扇(假設(shè)是A)。
按規(guī)則,主持人(知道哪扇門后面有車)打開了其中一扇門(假設(shè)是B),讓你看到這扇門背后是羊,并給你一個(gè)機(jī)會(huì),你可換一扇門(即從A換成C)。
你的選擇是“換”還是“不換”呢?
這個(gè)問題的答案,直覺判斷“換”與“不換”的概率都是一樣的,但實(shí)際上,你應(yīng)該換,換了后得到車的概率更高。
三門問題的標(biāo)準(zhǔn)解釋是這樣的:因?yàn)橛袃芍谎?,一臺(tái)車,所以你一開始選中羊的概率是2/3,選中車的概率是1/3。主持人打開一扇門后,如果你換的話,你之前選的是羊,必然會(huì)變成車,之前選的是車,必然變成了羊,概率就完全互換了。變成“2/3的概率選中車,1/3的概率選中羊”。
如果文字還是不好理解,用圖會(huì)清楚一些:
還是想不通的人,可以用一副撲克牌模擬一下。
三門問題的答案就是重組問題的答案,你現(xiàn)在把倉位從A移到C的話,押中的概率就從33%上升到了67%。
很神奇吧,只要有一條有關(guān)的新消息,哪怕與A、C公司都無關(guān),也能改變你現(xiàn)在的概率。
我們?cè)侔焉厦娴臈l件改一改,那位知情人士又說,當(dāng)然,重組沒有結(jié)束前,任何事都有可能發(fā)生,B也沒有完全出局,只是可能性比較低。
根據(jù)我們前面分析的方法,把倉位從A移到C的話,并不會(huì)上升到66%,但因?yàn)锽的概率低于33%,換的結(jié)果仍然比不換好。
我們把上面的例子從“內(nèi)幕交易”擴(kuò)大到正常的投資決策場(chǎng)景。
一支股票,如果你不研究,買入后實(shí)現(xiàn)預(yù)期收益的概率就是50%。
隨著你研究的深入——不管基本面分析還是技術(shù)分析還是高手指點(diǎn),甚至你只是去研究了其他的公司,每掌握一個(gè)新信息,就相當(dāng)于有一個(gè)無所不知的主持人幫你關(guān)上一扇“門”,買入后實(shí)現(xiàn)預(yù)期收益的概率開始改變,從50%向上或向下變化。
如果用計(jì)算機(jī)語言去描述一個(gè)投資高手研究決策的過程,必然是上面描述的那樣,這被稱為“貝葉斯算法”。
貝葉斯算法是人工智能的基礎(chǔ),你問ChatGPT一個(gè)問題,它蹦出來的每一個(gè)字,都是貝葉斯算法計(jì)算的最大概率值對(duì)應(yīng)的字。當(dāng)你告訴它,剛才說的不對(duì),補(bǔ)充了一個(gè)新的信息,它馬上就把這個(gè)新信息代入到剛才的結(jié)果中,產(chǎn)生出新的一串概率最高的文字結(jié)果——這回正是你要的答案。
看到這里,很多人就算理解了,也不知道為什么會(huì)變成這樣,它太違背直覺了。這也是概率的最大特點(diǎn)——它可以被計(jì)算,但是你很難感受。
所以,想要理解概率,最好的方法還是“算”——找一個(gè)生活中的例子,親手用貝葉斯公式算一算。
貝葉斯計(jì)算是有數(shù)字公式的(謝爾頓寫在黑板的那個(gè)),為了不把大家嚇跑,我用一個(gè)圖形界面去展示,保證不出現(xiàn)任何中學(xué)以上的數(shù)字公式。
3/6
貝葉斯計(jì)算的圖形界面
一位顧客走進(jìn)商店,看了看貨架,向你詢問了某商品的情況,請(qǐng)問:這個(gè)顧客最終買單的概率有多高?
對(duì)于一位銷售老手而言,這個(gè)問題相當(dāng)于基本面高手看財(cái)報(bào),技術(shù)高手看圖,可以通過顧客的一舉一動(dòng),判斷客戶的成交概率,決定花多少時(shí)間去向客戶推銷,選相應(yīng)的推銷重點(diǎn),并且決定給出多大的折扣把客戶拿下。
回答之前先要知道一個(gè)“先驗(yàn)概率”——銷售轉(zhuǎn)化率,即“成交客戶/所有進(jìn)來的人”,這是一個(gè)歷史經(jīng)驗(yàn)值,任何銷售員都應(yīng)該知道,假設(shè)這家店是20%。
下面這張圖把所有進(jìn)店的人分成兩部分,左邊為成交的20%部分,右邊為不成交的80%。
接下來,我們需要在先驗(yàn)概率的基礎(chǔ)上,考慮一個(gè)新消息——“向你仔細(xì)詢問了某商品的情況”。
這時(shí),我們需要知道關(guān)于這個(gè)新信息的兩個(gè)“條件概率”:成交客戶的詢問率和未成交客戶的詢問率——這也是歷史經(jīng)驗(yàn)值,即過去所有成交/不成交的客戶中,有過仔細(xì)詢問行為客戶的各自占比,有經(jīng)驗(yàn)的銷售,內(nèi)心對(duì)這兩個(gè)概率也應(yīng)該有大致的估計(jì)。
先看成交客戶的詢問率,即“仔細(xì)詢問的成交客戶/所有成交客戶”,假設(shè)為50%,即把左半邊五五開,然后得到上面咨詢的成交客戶,總占比20%*50%=10%;
再看未成交客戶的詢問率,即“仔細(xì)詢問的未成交客戶/所有未成交客戶”,假設(shè)為30%,把右半邊三七開,上面咨詢的未成交客戶,總占比80%*30%=24%。
上圖的四個(gè)角分別代表了四種情況,我們今天遇到的是上半部分——咨詢客戶,所以,首先把下半部分的情況去掉,只看上半部分。
我們現(xiàn)在要分析的是——仔細(xì)咨詢且成交的客戶,占所有成交客戶的比重,很明顯,就是左上角占上半部分的比例:
結(jié)果,在咨詢客戶中,最終成交的概率為:10%/(10%+24%)=29.4%。
所以,一位走進(jìn)商場(chǎng)的客戶,當(dāng)他開口咨詢時(shí),他的成交概率就從20%上升至29.4%,有經(jīng)驗(yàn)的銷售員就應(yīng)該注意這條銷售線索。
用這個(gè)方法也可以繼續(xù)推算出,一個(gè)不詢問的客戶,成交概率會(huì)從20%下降到15.2%。
一個(gè)銷售老手的每一步都在收集信息,進(jìn)行概率判斷,所以有經(jīng)驗(yàn)的銷售員接下來不是干巴巴地介紹產(chǎn)品,而是進(jìn)一步詢問客戶的需求,不同的需求分別對(duì)應(yīng)著不同的成交概率。
好了,我們又遇到了跟前面一樣的問題,就算概率從20%上升到29%,我還是不知道自己該怎么辦?
4/6
直到有操作意義的概率
顧客在來之前就知道自己會(huì)不會(huì)買東西,假設(shè)這人今天一定要買到,實(shí)際成交概率就是100%。
但銷售員并不知道這一點(diǎn),他只知道,客戶最終只有買(100%)和不買(0%)這兩種可能。
29%只是第一步的結(jié)果,他還可以不斷尋找新的信息,通過“貝葉斯算法”改變概率,以接近實(shí)際目標(biāo)概率——到底是0%還是100%。
這正是貝葉斯概率相對(duì)古典概率的意義,一定要找到有操作意義的概率的信號(hào)。
于是,銷售員注意到,顧客又問了另一個(gè)完全不相干的商品——不好,經(jīng)驗(yàn)告訴他,這種情況下的成交概率會(huì)下降,因?yàn)楹芏嗖怀尚馁I的客戶就喜歡東問西問。
但到底會(huì)下降多少呢?我們開始第二次“貝葉斯計(jì)算”,再引入兩個(gè)條件概率,成交客戶中,問過其他完全不相干商品的比例是30%,未成交客戶中,有40%。
以下是第二次貝葉斯計(jì)算的圖,需要說明的是,現(xiàn)在的先驗(yàn)概率不再是之前的20%,而是上一次計(jì)算后的約29%:
這個(gè)結(jié)果表明,當(dāng)顧客問了另一個(gè)完全不相干的商品,他的成交概率從29%再次下降為8.7%/(8.7%+28.4%)=23%
還好,問完后,客戶直接開始談價(jià)格,很好,根據(jù)談價(jià)格的行為的“第三次貝葉斯公式”,最終成交概率猛得上升到70%……
70%!等的就是你,銷售員也就不藏著掖著了,直接拿出大殺器——折扣,順利將客戶拿下,成交概率最終定格在100%。
在這個(gè)過程中,雖然一開始你只有一個(gè)與實(shí)際結(jié)果相差很大的先驗(yàn)概率,但通過掌握更多的信息,這個(gè)概率會(huì)越來越接近實(shí)際情況——0或100%,到了一定數(shù)值,你就可以作出應(yīng)對(duì)。
很多人肯定想問,我怎么才能知道這些條件概率呢?答案就是兩個(gè)字——先試。
這些都是在以往大量的銷售實(shí)踐中,漸漸總結(jié)出來的,并且始終不斷更新,比如今天的這個(gè)中年男人,假設(shè)在85%的成交概率下,最后竟然沒有買,這個(gè)經(jīng)驗(yàn)就會(huì)改變銷售人員的那些先驗(yàn)概率和后面的一系列條件概率。
所謂“經(jīng)驗(yàn)”,就是你在某個(gè)專業(yè)方向,掌握了先驗(yàn)概率和大量條件概率。
到了這里,我們就可以用“貝葉斯算法”回答開頭的投資機(jī)會(huì)分析的問題了。
5/6
投資中的概率
每個(gè)人都有自己最擅長(zhǎng)的研究方法,用此方法選出的股票,在一定時(shí)間內(nèi)(比如1年)符合預(yù)期收益率的概率,可以作為一個(gè)“先驗(yàn)概率”。
這個(gè)概率都不會(huì)太高,比如一般不可能超過60%(除非是特別長(zhǎng)線的方法,或者符合要求的標(biāo)的特別少的方法),否則,你只需要這一個(gè)指標(biāo),選20個(gè)股,就可以年年獲得超額收益了。
如果你之前用此方法的戰(zhàn)績(jī)不錯(cuò),那就可假定為55%。
接下來可以代入條件概率:在所有能/不能達(dá)到你的預(yù)期收益的公司中,管理不好的概率分別為多少。
事實(shí)上,這兩個(gè)條件概率并不會(huì)相差太大——這個(gè)條件概率差異,稱之為“區(qū)分度”,因?yàn)槟愕目紤]時(shí)間是一年,這么短的時(shí)間,管理因素幾乎可以忽略不計(jì)。而且,對(duì)于離職人員評(píng)價(jià)公司“管理混亂”的概率其實(shí)是非常高的,否則,離職的原因總不能是“自己能力不高吧”?
我們假設(shè)在所有能/不能達(dá)到你的預(yù)期收益的公司中 ,離職人員認(rèn)為管理好的概率分別為20%/25%。
第二次貝葉斯計(jì)算后的結(jié)果為53%。
由于管理因素在一年期的投資中區(qū)分度不夠,概率只是微微下降,仍然在50%以上。
投資者特別容易因個(gè)人好惡,用某個(gè)因素對(duì)標(biāo)的進(jìn)行“一票否決”,實(shí)際上區(qū)分度并沒有這么大,沒有貝葉斯概率,也就談不上理性投資。
接下來的條件,“動(dòng)銷好”對(duì)一年期的投資結(jié)果影響的區(qū)分度就大多了,在符合/不符合預(yù)期的標(biāo)的中分別為50%和30%。
區(qū)分度越大,這個(gè)條件的影響越大,在加入“動(dòng)銷好”這個(gè)條件后,投資收益符合預(yù)期的概率就上升到65%。
接下來,每發(fā)現(xiàn)新的信息,你都可以用貝葉斯算法,更新“符合預(yù)期收益”的概率。
投資高手會(huì)設(shè)定一個(gè)買入的概率,比如70%,一旦新的條件使概率上升到70%,就可以買入,后續(xù)再根據(jù)新的信息統(tǒng)計(jì)分析概率,繼續(xù)上升到某一個(gè)水平比如80% ,則繼續(xù)加倉,如果下降到某一個(gè)概率,比如低于55%,就結(jié)束投資。
6/6
三類貝葉斯主義的投資高手
總結(jié)一下上面的方法:
第一、投資機(jī)會(huì)的判斷=判斷達(dá)到預(yù)期收益率的概率
第二、隨著新信息的出現(xiàn),這個(gè)概率也在不斷變化
第三、隨著概率的變化,也要進(jìn)行相應(yīng)的操作
常常有人在后臺(tái)留言說,剛大,我找到一個(gè)堪比蘋果之于巴菲特的公司,你看看怎么樣?
非常遺憾,蘋果的成功不是巴菲特一開始就算出來的,而是一年年符合預(yù)期而“剩者為王”的,一個(gè)蘋果背后就有99家公司不符合巴菲特繼續(xù)持有的要求,因?yàn)樾滦畔⒊霈F(xiàn)導(dǎo)致后驗(yàn)概率下降。
投資是一場(chǎng)長(zhǎng)跑,貝葉斯概率就是你的導(dǎo)航。
從貝葉斯概率的角度看,所謂高手有三種:
第一種是貝葉斯計(jì)算能力超強(qiáng)的高手。
最典型的是量化程序,人干不過機(jī)器的地方在于:機(jī)器用固定的算法每時(shí)每刻在全部標(biāo)的中搜索符合要求的投資機(jī)會(huì),而人是憑感覺和經(jīng)驗(yàn)在有限的幾個(gè)標(biāo)的中,思考大致符合要求的投資機(jī)會(huì),有時(shí)還考慮用什么樣的投資方法。
所以真正的投資高手,可能你問他什么是“貝葉斯計(jì)算”,他一臉懵逼,那是因?yàn)樗沿惾~斯計(jì)算完全內(nèi)化了。
比如巴菲特曾說:“用虧損的概率乘以可能虧損的金額,再用盈利的概率乘以可能盈利的金額,最后用盈利的結(jié)果減去虧損的,這就是我們一直試圖做的辦法。”——這就是計(jì)算預(yù)期收益率。
第二類是擅長(zhǎng)挖掘有區(qū)分度的信息的高手。
通過前面的例子,可以看出,大部分新信息的區(qū)分度都很有限,你覺得有用的信息,可能在那些不好的股票上也同樣有用,并不足以讓最終概率大幅提升。
所以最常見的高手都是在某一個(gè)大眾缺乏認(rèn)知的地方,掌握了一些少有人掌握的“條件概率”,比如專注于某一個(gè)行業(yè),洞察此行業(yè)一些特殊的規(guī)律與現(xiàn)象,以此比別人更早發(fā)掘勝率高的投資機(jī)會(huì)。
還有“一招鮮+快速交易+果斷止損”的短線高手,并不需要太高的勝率,只需要圖形好(先驗(yàn)概率)+擇時(shí)(稍高的勝率)。
更厲害的是觀察市場(chǎng)風(fēng)格變化的高手。同一類信息在不同時(shí)期,區(qū)分度也是不同的,比如2017-2020年,ROE指標(biāo)的區(qū)分度就非常好,但2021年以后就失效了,而分紅率指標(biāo),在2021年前沒有什么區(qū)分度,但21年以后,區(qū)分度大大增加。
此類高手,擅長(zhǎng)洞察常見的指標(biāo)在不同時(shí)期區(qū)分度的變化,以及背后的宏觀因素,及時(shí)加大最有效的因子,改變自己的選股風(fēng)格,以適應(yīng)不同的市場(chǎng)。
第三類高手擁有更高的“先驗(yàn)概率”。
大部分人在選股階段的“先驗(yàn)概率”都差不多,靠的是后續(xù)找到有區(qū)分度的新信息,而第三類傳說中的高手,在選股階段就有更高的“先驗(yàn)概率”,之后只要用“淘汰指標(biāo)”篩選掉不符合要求的標(biāo)的就行了。
最典型的是一些有核心資源圈信息優(yōu)勢(shì)的大佬,還有那些有能力主動(dòng)引導(dǎo)題材與市場(chǎng)情緒的大資金,只需要“先驗(yàn)概率”就能立于不敗之地。
這類高手中還有一種天賦異稟、耐心超群的人,有一套極高的“先驗(yàn)概率信號(hào)”,但符合要求的情況極少,大部分情況下都在耐心等候,一旦信號(hào)出現(xiàn),立刻加杠桿干。
****
很多人都會(huì)告訴你,投資要做大概率正確的事,比如買白馬。
但這種古典概率的思想,在投資中的結(jié)果往往是“四庫全輸”,因?yàn)?strong>人的行為會(huì)改變概率,人人都說白馬好,白馬就會(huì)被抬高到毫無賠率的價(jià)格,人人避之不及的小概率事件,往往會(huì)出現(xiàn)賠率極高的機(jī)會(huì)。
古典概率所設(shè)想的那些先驗(yàn)的、穩(wěn)定的、可知的大概率事件,注定不會(huì)出現(xiàn),真實(shí)投資中的概率因人而異,而且常常因?yàn)轭D悟而造成概率突變。
然而古典概率是如此的符合人的直覺,投資者總是出現(xiàn)“正在做大概率正確的事”的幻覺。如果大家對(duì)貝葉斯概率感興趣,我會(huì)繼續(xù)這個(gè)系列的第二篇。
關(guān)鍵詞: